Skip to main content

THE FORGOTTEN SCIENTIFIC HERITAGE: THE INDIA STORY (PART 1)

 India is a land of great diversity. This diversity is seen not only in its culture but also in the advancements that the country has made in the field of science and mathematics. Our textbooks and journals often attribute groundbreaking scientific ideas to foreign 'geniuses,' while many of these discoveries actually have their origins here in India. As a result, we are neglecting the Indian roots and contributions that formed the foundations of most of those theories.

The term 'foreign' is inappropriate in the context of science, as scientific discoveries, regardless of where they originate, have a global impact and contribute to the collective knowledge of humanity, without assigning exclusive credit to any one country or individual.

The purpose of this blog is to highlight the significant advancements in science and mathematics made in India, which have often been overshadowed or credited to other countries or scientists.

In this blog we will be discussing about the Kerala School of Astronomy and Mathematics.


बकुलाधिष्ठितथ्वेना 

विहारो यो विष्यथे 

ग्रुहानमणि सोयं स्याथ 

निजनमणि माधव |

-Madhava (13th sloka, Venuroham)


Astronomical and mathematical development in India is not well known after 10th century AD and many important works that prove the presence of many great astronomers and mathematicians of Kerala remain little known in the field of history of science. One such great astronomer-mathematician was Madhava of Sangamagrama. Sangamagrama Madhava’s work Venuaroham was used for the computation of the true longitude of the moon. Sangamagrama Madhava was one of the great geniuses of the time before Kepler and Newton.

Sangamagrama Madhava and his school were known to the western world through a series of papers published by Charles Whish in 1834 in the journal called Transactions of Asiatic Society of Great Britain and Ireland. In his series of papers, Whish showed that works of Newton, Leibnitz, Gregory and others (who lived during 17th -18th century) were just rediscoveries of the mathematics contributed by the Kerala School. 



 Portrait 1: Madhava of Sangamagrama


While Europe was divided in modeling solar system to geocentric and heliocentric systems even in the 17th century, an astronomer-mathematician from Kerala during the 16th century described observational studies as geocentric which can be transformed into a mathematical model with the Sun as the centre. 

Neelakanda Somayaji, born in present day Malappuram district of Kerala, a 16th century astronomer-mathematician belonging to a long guru-sishyaparampara chain of five hundred years of length, described in his work, Tantra Sangraha, the subject of  observational astronomy along with necessary mathematical techniques. 

Neelakanda also made a significant contribution by revising Aryabhata's model for the interior planets, Mercury and Venus. His modifications provided a more precise calculation of the equation of the center for these planets, surpassing existing models in Islamic and European astronomy prior to Johannes Kepler, who emerged 130 years later. This provides a significant insight into the groundbreaking contributions of Indian scientists, demonstrating their achievements in comparison to global advancements at that time.

In his work, Aryabhatiyabhasya, Neelakanda devised a computational scheme for planetary motion that outperformed later models, including Tycho Brahe's. His approach suggested a heliocentric system where Mercury, Venus, Mars, Jupiter, and Saturn orbited the Sun, which itself circled the Earth.



Figure 1: The Temple in Kerala were Madhava made his great discoveries.



MADHAVA'S ANOMAMLISTIC CYCLES




Figure 2: Moon's Synodic and Sidereal cycle



The fundamental lunar cycles in relation to the Earth are the Synodic cycle  (refer my blog on the Moon), which has a period of 29.5 days (New Moon to New Moon) and the Anomalistic cycle (perigee to perigee) which is 27 days 13hrs 18min 34.45s (about 27.5 days). Anomalistic cycles from a zero period will end at cycle number, days, hours, minutes, seconds respectively as follows:

1, 27,13 18 34.45

2, 55, 02,37, 08.90

3, 82, 15, 55, 43.35

4, 110, 05, 14, 17.79

5, 137, 18, 32, 52.24

6, 165, 07, 51, 36.69

7, 192, 21, 10, 01.14

8, 220, 10, 38, 35.59

9, 247, 23, 47, 10.04


As you can see the difference between successive cycles is 12 hours and alternate cycles is 24 hours. This means that successive durations corresponds to alternate day-night difference.

Let's discuss the way in which Madhava devised this entire concept.


The Madhava Algorithm

Before going into the algorithm it is important to understand some terms:

1) ध्रुव कालम् (Dhruva Kalam)
    It is the time at which the Moon and its apogee (the point in the Moon's orbit which is farthest away from Earth) lines up. 

2) चन्द्र तुंगा योग (Chandra Thunga Yogam)
    After Dhruva Kalam, for nine revolutions of the Moon around the Earth, the position of the Moon  shifts by 3 degrees every day. These nine shifts are called the Chandra Thunga Yogams.

3) सूर्योदय मध्य (Suryodaya Madya)
    The starting reference point for the calculations is when the Chandra Thunga Yogam occurs at sunrise. This is known as Suryodaya Madhya. 

4) ध्रुवः (Dhruvas -D1 to D9): These are specific points in time (measured in days) when a particular cycle of the Moon's alignment with its apogee (farthest point from Earth) completes. Each Dhruva represents the end of a particular anomalistic cycle of the Moon.

5) चन्द्रवाक्यम् (Chandravakya S1 to S9): These are the angular positions of the Moon in its orbit (measured in degrees) when each of the Dhruva cycles ends. Essentially, they tell us where the Moon is in its orbit when these Dhruva cycles complete.

With this reference in mind, let us delve deeper into the details.

Position of the moon and the apogee coincide during a time called dhruva kalam. The algorithm of Madhava is based on the computation of 9 dhruvas (D1, … D9). 
When position of the moon and the apogee coincide during a time, dhruva kalam, from that  point of time there will be 9 Chandrathungayogam which can be computed as follows:
For each moon revolution around the earth, the Chandrathungayogam will get shifted by 3 degrees every day. To start with a reference point, the starting point will be when Chandra thunga yogam happens at sunrise (Suryodaya Madhya). 
The number of days of this type is 188611 and the completed moon’s orbiting around the earth is 6845. From this we can calculate the moon orbiting period as:

188611/ 6845 = 27.5 days approximately (27 days 13h 18m 34.45s to be exact). 

Based on Madhava’s algorithm, we can find that anomalistic cycles from a zero period will end respectively at Dhruvas D1 to D9 at 6460, 3411, 362, 4158, 1109, 4905, 1856, 5652, and 2603 respectively and corresponding chandravakya S1 to S9 as 0, 28, 56, 83, 111, 138, 166, 193, and 221 respectively.


  • D1: After 6,460 days, the first Dhruva cycle completes.

    • S1 (Chandravakya at D1): 0 degrees. This means that at the end of the first Dhruva cycle, the Moon is at 0 degrees in its orbit, marking the start of the next cycle.
  • D2: After 3,411 days, the second Dhruva cycle completes.

    • S2 (Chandravakya at D2): 28 degrees. This means that when the second cycle ends, the Moon is at 28 degrees in its orbit.
  • D3: After 362 days, the third Dhruva cycle completes.

    • S3 (Chandravakya at D3): 56 degrees. At the end of this third cycle, the Moon is positioned at 56 degrees in its orbit.
  • D4: After 4,158 days, the fourth Dhruva cycle completes.

    • S4 (Chandravakya at D4): 83 degrees. The Moon's position at the end of the fourth cycle is 83 degrees.
  • D5: After 1,109 days, the fifth Dhruva cycle completes.

    • S5 (Chandravakya at D5): 111 degrees. At the conclusion of the fifth cycle, the Moon is at 111 degrees in its orbit.
  • D6: After 4,905 days, the sixth Dhruva cycle completes.

    • S6 (Chandravakya at D6): 138 degrees. The Moon is positioned at 138 degrees at the end of the sixth cycle.

    In summary,
  • D1: 6,460 days → S1: 0 degrees
  • D2: 3,411 days → S2: 28 degrees
  • D3: 362 days → S3: 56 degrees
  • D4: 4,158 days → S4: 83 degrees
  • D5: 1,109 days → S5: 111 degrees
  • D6: 4,905 days → S6: 138 degrees
  • D7: 1,856 days → S7: 166 degrees
  • D8: 5,652 days → S8: 193 degrees
  • D9: 2,603 days → S9: 221 degrees                                                                                                                                                                                                                                                                                Each Dhruva represents a significant point in the Moon’s alignment cycle, and the Chandravakya values provide the specific angular positions at these points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              TO BE CONTINUED...                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              REFERENCES:                                                                                                    
  • Kerala School of Astronomy and Mathematics - Dr. M.D. Srinivas; Centre of Policy Studies, Chennai; Indian Institute of Technology Guwahati.
  • Kerala School of Astronomy and Mathematics: Contributions and Contemporary Reference - Indira Gandhi National Centre for the Arts, Government of India.
  • The Legacy of Sangamagrama Madhava and Kerala School of Astronomy and Mathematics - Science India Magazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  *All the media published in this blog belongs to their original creators and 'Knowledge Through Science' does not claim any right over it.                                                                             
  • Comments

    Popular posts from this blog

    HIPPASUS : AN UNFORTUNATE MATHEMATICIAN

    This is my first blog on mathematics. Mathematics is essentially the 'science' of numbers. Mathematics is the house of numbers. I personally feel that all these numbers have their own expressions, they are living entities, they are constantly used in our daily commute .   ''Mathematics is the Queen of all Sciences and Arithmetic is the Queen of Mathematics'' -Carl Friedrich Gauss With the help of set theory, if the consider the universal set (U) as 'number' denoted for simplicity as N, i.e. U= N, then I can denote the elements in N in the form of a set as given below . N={0,1,⅔,5i, √2, - 3} Here inside the set we find different types of numbers. So for better understanding the numbers are classified into many groups. Now I will introduce the different types of numbers and give an example for each by taking a number from within the set N , Natural numbers- eg. 1 Whole numbers- eg. 0 and 1 Integers- eg. 0,1 and -3 Rational numbers- 0,1, ⅔, -3 Irrational nu

    BLACK HOLE: A HUNGRY MONSTER

    The most important headline in the news is the discovery of a black hole at the centre of the Milky Way Galaxy... The idea behind black holes can be conceived both theologically and scientifically. The development of science and technology has helped us to know more about these gentle giants, wait, are they gentle??? Many people, especially the young consider black holes as monstrous systems which engulfs everything which comes near its field of influence, according to them black holes are horrific and terrible. The truth is not far away from this, but do you know that black holes are very essential in our Universe. Everything in our Universe has a positive and negative aspect associated with it. NASA's modern telescopes captured the image of this black hole situated in the centre of the Milky Way Galaxy...you can find the image below...                                              Figure 1:   Sagittarius A* '' In space no one can hear you scream; and in a black hole no one

    RELATIVITY OF SIMULTANEITY

    Time-we are well aware of this physical entity which according to many waits for none. Several theories were developed on the concept of 'time'. It was during the mid-sixteenth century that Sir Isaac Newton published his masterpiece, The Principia Mathematica,  in which he introduced the concept of 'absolute time' .  Figure 1: Unparalleled geniuses, Isaac Newton and Albert Einstein. Though this Newtonian concept was famous and widely accepted in the beginning, it faced a lot of opposition during the early twentieth century from a patent clerk who was working on a new concept of space and time. This patent clerk would publish his famous papers on relativity, in a scientific masterpiece,  'Relativity- Special and the General Theory'. The patent clerk was none other than, Albert Einstein who believed in the concept of  'relativistic time'.  Poor Einstein had to face a lot of criticism when he published his findings solely because, it questioned the findings